
Simon’s Mostly Reliable Guide to
KERNAL I/O

Table of Contents
Introduction..1
Terminology..2

Logical File..2
Device Number..2
Secondary Address...2

I/O with BASIC..3
Opening a Logical File..3
Output to a Logical File...3
Input from a Logical File...3
Closing a Logical File..4
Saving a Program...4
Loading a Program...4
Checking Operation Status..4

I/O with Machine Code..5
Opening a Logical File..5
Output to a Logical File...6
Input from a Logical File...6
Clearing Channels..7
Closing a Logical File..7
Saving a Program...7
Loading a Program...8
Checking Operation Status..8

Device-specific Behaviour...9
Keyboard..9
Cassette..9
Screen...12
Printer...12
Plotter...12
Disk Drive..12

Introduction
This document tries to explain the “why”, “what” and “how” details of input/output handling by
Commodore 8-bit computers from the VIC-20 onwards. The specifics mentioned apply to the VIC-
20, it is possible they vary slightly with other models.

In contrast to many other systems of the era Commodore designed a flexible and versatile interface
to allow programmers to interact with peripherals and to enable new hardware devices to be
integrated without major changes to applications.

BASIC programs can access printers, disk drives and other devices using high-level concepts with a
set of simple commands. Machine code programs also have a well-defined and documented set of
KERNAL routines which perform the equivalent functions.

Terminology
I will use the same terms commonly referred to in Commodore documentation and other reference
material. These will be shown in italics when they are first mentioned.

Logical File
Both the computer and peripheral need a handle to refer to an interaction between each other, there
may be multiple instances to different devices or the same device at any one time. For the computer
this reference is called a logical file.

A logical file has a defined lifecycle: it is opened, I/O is performed and then it is closed. The
number of logical files that can be active at any one time is finite, the computer can have at most ten
logical files open and many devices have a lower limit. A logical file might not be associated with
an actual file on a device such as a disk drive, for example a logical file is also used for sending
output to a printer.

The computer uses a logical file number (LFN) to identify to a specific logical file. An LFN is an
integer between 1 and 255.

Devices are not aware of LFNs and have their own internal mechanisms to identify between logical
files.

Device Number
Each logical file must be associated with a specific target device. The following table lists typical
device numbers:

Device Number Device Type
0 Keyboard
1 Cassette
2 RS-232 port
3 Screen

4, 5 Printer
6, 7 Plotter
8-11 Disk drive

12-30 Other serial device

Device numbers of 4 and above are external to the computer, normally on the serial bus.

Secondary Address
For a device to differentiate between two logical files, or to select different behaviour, a logical file
may have a secondary address (SA). The purpose and valid values of a secondary address vary
between devices, full details will be given in the specific section for the device below.

In some circumstances the computer also treats a logical file differently depending on secondary
address, again this is explained below.

I/O with BASIC
Commodore BASIC has a number of commands and statements to perform I/O operations.

Opening a Logical File
The OPEN statement is used to open a new logical file. In addition to LFN, device number and SA a
variable length string (often a file name or command) may be given.

OPEN <LFN>,<device number>[,<SA>[,<file name>]]

Attempting to reuse an open LFN will result in a ?FILE OPEN ERROR. Other errors may not be
indicated until read or write operations are attempted.

Output to a Logical File
Data is sent to a logical file using the PRINT# statement.

PRINT#<LFN>,<value1>[;<valueN>]

As with the PRINT statement a Carriage Return will be appended unless the statement ends with a
semicolon (;).

Attempting to write to a logical file that is not open will result in a ?FILE NOT OPEN ERROR.
Other errors may result in the ST variable being set.

Another statement which controls output is

CMD <LFN>[,<string>]

All further output using the PRINT statement will be sent to the logical file specified instead of the
screen. In this way output from a program or a listing can be sent to a device (such as a printer).

To flush output the statement

PRINT#<LFN>

should be made before closing the logical file.

LFNs of 128 and above have special behaviour with respect to line endings. After every Carriage
Return ($0D) a Line Feed ($0A) is also sent.

Input from a Logical File
Two statements are available to read data from a logical file.

For line-based information the INPUT# statement reads one or more records into variables

INPUT#<LFN>,<variable1>[,variableN]

Each line is is terminated by a Carriage Return. Each record is separated from the next by any of the
following characters

• comma (,)

• semicolon (;)

• colon (:)

In order to have a record containing any of these characters the record must be written surrounded
by double quotes ("). A record cannot contain a Carriage Return.

If the destination for a record is a numeric variable the record must be a valid floating point number,
otherwise a ?FILE DATA ERROR is reported.

Single bytes can be read from a logical file using the GET# statement

GET#<LFN>,<variable1>[,variableN]

Single characters are read and assigned to each variable, this includes the record separators listed
above and Carriage Return. If the destination is a numeric variable the character must be a decimal
digit otherwise a ?FILE DATA ERROR is reported. If a NUL ($00) byte is read using GET# it will
result in an empty string being assigned to the variable.

When the last byte of data for a logical file is read bit 6 of the status variable ST is set to indicate
end of file.

Neither INPUT# nor GET# may be executed in direct mode, they can only be used within a BASIC
program.

Closing a Logical File
When all I/O operations on a logical file have been performed it must be closed

CLOSE <LFN>

Without an explicit close data written to a logical file may be lost.

Saving a Program
The current BASIC program can be saved to a device using the SAVE command

SAVE [<file name>[,<device number>[,<SA>]]]

The only valid devices to save to are cassette and disk. If no device number is given the program
will be saved to cassette. If no secondary address is given 0 is used.

Loading a Program
A program (either BASIC or machine code) can be loaded into memory using the LOAD command

LOAD [<file name>[,<device number>[,<SA>]]]

The only valid devices to load from are cassette and disk. If no device number is given the program
will be loaded from cassette. If no secondary address is given 0 is used.

Checking Operation Status
To signal non-fatal errors and other events the status variable ST may be read. The value returned is
a set of bits, the meaning of each bit depends on what device was the target of the last I/O operation.

The ST variable may not be assigned to.

I/O with Machine Code
Machine code programs perform I/O using a set of KERNAL routines, parameters are passed in
registers and zero page locations, results are returned using the same.

Unless otherwise noted errors are indicated by the carry bit of the Status Register (Cb) being set and
one of the following values in the Accumulator (.A)

Value Description Value Description
0 STOP key pressed 5 Device not found
1 Too many open files 6 File is not an input file
2 File already open 7 File is not an output file
3 File not open 8 File name is missing
4 File not found 9 Illegal device number

Some routines may update the STATUS ($90) byte which should be read using the READST
routine.

Opening a Logical File
Three routines must be called to open a new logical file, the first two can be called in either order.

SETLFS ($FFBA)
Set logical file number, device number and secondary address

IN OUT
.A LFN –
.X Device number
.Y SA

Store the parameters needed for a new logical file.

SETNAM ($FFBD)
Set file name

IN OUT
.A File name length –
.X File name address low byte
.Y File name address high byte

Store the file name for a new logical file. If no file name is required just the length needs to be set
(to zero).

OPEN ($FFC0)
Open logical file

IN OUT
– .A Error code

ST

On success Cb will be clear. Depending on device errors may be reported in STATUS.

Output to a Logical File
The KERNAL has an output channel that is used for all output operations. By default this is
assigned to the screen (device 3). Output can be directed to the device associated with a logical file
using the CHKOUT routine.

CHKOUT ($FFC9)
Open channel for output

IN OUT
.X LFN .A Error code

On success Cb will be clear and all future output will be sent to the logical file until the CLRCHN
routine is called.

Data is sent to the output channel using the CHROUT routine.

CHROUT ($FFD2)
Send byte to output channel

IN OUT
.A Byte to send .A Error code

ST

Input from a Logical File
The KERNAL has an input channel that is used for all input operations. By default this is assigned
to the keyboard (device 0). Input can be directed to the device associated with a logical file using
the CHKIN routine.

CHKIN ($FFC6)
Open channel for input

IN OUT
.X LFN .A Error code

On success Cb will be clear and all future input will be taken from the logical file until the CLRCHN
routine is called.

For most devices data is read from the input channel using the CHRIN routine.

CHRIN ($FFCF)
Read byte from input channel

IN OUT
– .A Data

ST

The routine blocks until data is available or a permanent error is detected.

The GETIN routine allows a program to try to read from the keyboard or RS-232 port without
blocking.

GETIN ($FFE4)
Check for byte from input channel

IN OUT
– .A Data

If the Cb is clear then .A contains the data byte, otherwise no data is available.

Calling GETIN for other devices has the same behaviour as CHRIN.

Clearing Channels
In order to switch either the input or output channel to another logical file, or to restore it to its
default source the CLRCHN routine must be used.

CLRCHN ($FFCC)
Clear channels

IN OUT
– ST

Channels must be cleared before a logical file is closed.

Closing a Logical File
When all I/O operations on a logical file have been performed it must be closed by calling the
CLOSE routine.

CLOSE ($FFC3)
Close logical file

IN OUT
.A LFN .A Error code

Without an explicit close data written to a logical file may be lost.

The KERNAL also has a CLALL routine, this discards all open logical files and clears the input and
output channels but does not notify external devices to allow them to close any logical files.

Saving a Program
A program (or any region of memory) can be saved to a device using the SAVE routine. Before
calling it the SETLFS and SETNAM routines must be called. The LFN passed to SETLFS is not
used.

The start address must be stored in two consecutive zero page addresses and the Accumulator
loaded with the address of the first byte. Memory is saved up to, but not including the end address.

SAVE ($FFD8)
Save file to device

IN OUT
.A Zero page with start address .A Error code
.X End address low byte ST
.Y End address high byte

The only valid devices to save to are cassette and disk.

Loading a Program
A program can be loaded from a device using the LOAD routine. Before calling it the SETLFS and
SETNAM routines must be called. The LFN passed to SETLFS is not used.

LOAD ($FFD5)
Load file from device

IN OUT
.A 0 – load, !0 – verify .A Error code
.X Load address low byte .X End address low byte
.Y Load address high byte .Y End address high byte

ST

The end address points to the location immediately after the last byte loaded.

The only valid devices to load from are cassette and disk.

Checking Operation Status
To signal errors and other events the status may be read using the READST routine.

READST ($FFB7)
Read status

IN OUT
– .A Status

The value returned is a set of bits, the meaning of each bit depends on what device was the target of
the last I/O operation.

Device-specific Behaviour
Operations on logical files behave slightly differently depending on the target device. This section
covers how commands and routines operate for each type of device.

Keyboard
Only input operations can be performed on the keyboard.

Calling the CHRIN KERNAL routine for the first time turns on the cursor and waits for a line
terminated with a Carriage Return before returning the first character of the logical line entered.
Subsequent calls will return the remaining characters, including the final Carriage Return.

File names and secondary addresses have no meaning for logical files associated with the keyboard.

Cassette
The cassette tape can store program files and data files with optional names. Files can only be read
with the corresponding command or function it was written with, for example a file that was
SAVEed must loaded with either the LOAD BASIC command or the LOAD KERNAL routine.

When searching for a file by name with OPEN or LOAD the first file whose name is equal to or is a
superset of the given name will be matched. For example if the command is

LOAD "EXAM"

then either the file “EXAMPLE” or “EXAMINE” would be loaded, the file “EX” would be ignored.
Wildcards are not supported so the characters “?” and “*” would have to be exact matches. If no
name is given then the next file of the appropriate type (data or program) will be read.

If an End of Tape record is reached before a matching file name the operation aborts with a “Device
not found” error (not, as documented, setting b7 in the status byte).

Writing Data Files
Data files are created by opening a logical file with a secondary address of 1 or 2.

Data is written in 192 byte blocks until the file is closed when any remaining data followed by a
NUL ($00) byte is written out. If the logical file has a secondary address of 2 then an End of Tape
record is also written.

Reading Data Files
Data files are read by opening a logical file with a secondary address of 0.

Data is read until a NUL byte is reached when the End of File bit is set in the status byte. This
means cassette data files cannot contain NUL bytes (except as the final character).

Saving a Program
Program files are written as a single unit to tape. When SAVEd with a secondary address of 1 the
file is written with a record type that indicates the file is not relocatable.

If a secondary address of 2 is used then an End of Tape record is written after the program.

Loading a Program
The load address of a program is determined as follows:

• If the file was saved with a non-relocatable header it is loaded to the address it was saved at

• If the file was saved with a relocatable header and the SA is 1 it is loaded to the address it
was saved at

• Otherwise it is loaded to the start of BASIC (BASIC LOAD command) or the address
provided (KERNAL LOAD routine).

Checking Operation Status
The status byte (ST variable or result of READST routine) has the following bits set after a cassette
operation.

Bit Description
2 Short block
3 Long block
4 Read error
5 Checksum error
6 End of file

RS-232 Port
The RS-232 port provides an interface to peripherals such as printers and modems, as well as other
computers.

Opening a Logical File
A file name must be supplied when opening the logical file, it must be at least two bytes in length
which define the control and command registers.

Control Register

Command Register

A logical file may be used for both the input channel and the output channel simultaneously.

Because of bugs in the KERNAL the X line mode should not be used.

The return value from the OPEN KERNAL routine always has the Cb set and the value $F0 in .A. If
a logical file is opened by a BASIC program all variables are cleared.

Opening a logical file causes the top two pages of RAM to be assigned to the receive and transmit
buffers.

Secondary addresses have no meaning for logical files associated with the RS-232 port. Only one
logical file to the RS-232 port should be open at a time.

Closing a Logical File
When the RS-232 logical file is closed the port is immediately returned to an idle state. There is no
official mechanism to tell that the transmit buffer is empty.

The return value from the CLOSE KERNAL routine always has the Cb set and the value $F0 in .A.
If a logical file is closed by a BASIC program all variables are cleared.

01234567

0: 1 stop bit
1: 2 stop bits

Word length
0 0: 8 bits
0 1: 7 bits
1 0: 6 bits
1 1: 5 bits

Baud rate
0 0 0 1: 50
0 0 1 0: 75
0 0 1 1: 110
0 1 0 0: 134.5
0 1 0 1: 150
0 1 1 0: 300
0 1 1 1: 600
1 0 0 0: 1200
1 0 0 1: 1800
1 0 1 0: 2400
1 0 1 1: 3600

01234567

Parity
x x 0: No parity
0 0 1: Odd
0 1 1: Even
1 0 1: Mark
1 1 1: Space

0: Full duplex
1: Half duplex

0: 3 line
1: X line

Checking Operation Status
Because of a KERNAL bug checking the status byte using the ST variable or by calling the
READST routine will always return 0. To determine the actual status RSSTAT ($297) must be read
directly.

Bit Description
0 Receive parity error
1 Receive framing error
2 Receive buffer overrun
4 No CTS detected
6 No DSR detected
7 Break

Screen
A logical file opened to the screen can can be assigned to the input channel. Reading from such a
logical file returns characters on the current logical line using the same rules as given in the relevant
“Input from a Logical File” section above.

File names and secondary addresses have no meaning for logical files associated with the screen.

Printer
Only output operations can be performed to printers.

Different models support various control character sequences and secondary addresses. A secondary
address that is supported by many printers is 7 which selects business mode (upper & lower case
characters).

File names have no meaning for logical files associated with the printer.

Plotter
Only output operations can be performed to plotters.

The 1520 plotter uses secondary addresses to select different modes and functions.

SA Description
0 Print ASCII data
1 Plot X, Y data
2 Select colour
3 Select character size
4 Select character rotation
5 Line style
6 Swap upper & lower case
7 Reset plotter

File names have no meaning for logical files associated with the plotter.

Disk Drive
Disk drives can be used to store both program and data files. The computer can also send
commands and queries to the Disk Operating System (DOS) running in the drive.

An optional drive number followed by a colon may be present before a file name. File names may
be up to 16 characters. When addressing an existing file the wildcard characters “*” and “?” may
be used.

Opening a Logical File
The disk drive uses the secondary address to distinguish between different types of operation.

SA Description
0 Load file
1 Save file

2-14 Data file
15 Command channel

A file name may be followed by a file type and a mode. Each of these are separated with commas
(,). To open a new data file for writing the file type and mode of “W” must be used

OPEN 2,8,2,"DATA,S,W"

All file types, including program (PRG) files, can be opened.

To overwrite an existing file the file name must be prefixed with “@” character, because of bugs in
the 1541 drive it is advised to first delete the file with the SCRATCH DOS command instead.

A data file may be appended to by using a mode of “A”. If a file was not closed properly (a splat
file) it may be recovered by using a mode of “M”.

If an attempt is made to open a logical file with a device number that does not match a disk drive a
“Device not present” error is reported. Other errors, such as opening a non-existent file for read will
not be detected at the time of opening.

The command channel is used to perform DOS commands and to read the drive status.

A file name must be provided when opening a logical file (unless the secondary address is the
command channel).

Saving a Program
To overwrite an existing file the file name must be prefixed with “@” character, because of bugs in
the 1541 drive it is advised to first delete the file with the SCRATCH DOS command instead.

A file name must be provided when saving a program to disk. Files will be created with the “P”
(PRG) file type.

Secondary addresses have no meaning when saving a program to disk.

Loading a Program
Using a secondary address of 1 causes the program to be loaded at the address it was saved at.
Otherwise it is loaded to the start of BASIC (BASIC LOAD command) or the address provided
(KERNAL LOAD routine).

A file name must be provided when loading a program from disk. The file type must be “P” (PRG).

Reading the Directory
If the file name used to open a logical file or load a program starts with “$” the directory of the disk
will be read.

If the secondary address is 0 then the directory contents are returned as a sequence of BASIC lines
(link address, line number, data, NUL). If the secondary address is 2 or higher the directory contents
are returned as the raw data contained in the BAM and directory blocks on the disk.

Checking Operation Status
The status byte (ST variable or result of READST routine) has the following bits set after an
operation.

Bit Description
0 Write timeout
1 Read timeout
6 End of file
7 Device not present

If a non-existent file is opened for read then a read timeout will be reported when the first read
operation (BASIC INPUT# or GET#, or KERNAL CHRIN routine) is performed.

If an existing file is opened for write (rather than append) then both a read & write timeout will be
reported when at least two bytes are written (BASIC PRINT# or KERNAL CHROUT routine).

	Introduction
	Terminology
	Logical File
	Device Number
	Secondary Address

	I/O with BASIC
	Opening a Logical File
	Output to a Logical File
	Input from a Logical File
	Closing a Logical File
	Saving a Program
	Loading a Program
	Checking Operation Status

	I/O with Machine Code
	Opening a Logical File
	Output to a Logical File
	Input from a Logical File
	Clearing Channels
	Closing a Logical File
	Saving a Program
	Loading a Program
	Checking Operation Status

	Device-specific Behaviour
	Keyboard
	Cassette
	Writing Data Files
	Reading Data Files
	Saving a Program
	Loading a Program
	Checking Operation Status
	RS-232 Port
	Opening a Logical File
	Control Register
	Command Register

	Closing a Logical File
	Checking Operation Status

	Screen
	Printer
	Plotter
	Disk Drive
	Opening a Logical File
	Saving a Program
	Loading a Program
	Reading the Directory
	Checking Operation Status

